Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example

نویسندگان

  • Juan G. Villegas
  • Fernando Palacios
  • Andrés L. Medaglia
چکیده

The Colombian coffee supply network, managed by the Federación Nacional de Cafeteros de Colombia (Colombian National Coffee-Growers Federation), requires slimming down operational costs while continuing to provide a high level of service in terms of coverage to its affiliated coffee growers. We model this problem as a biobjective (cost-coverage) uncapacitated facility location problem (BOUFLP). We designed and implemented three different algorithms for the BOUFLP that are able to obtain a good approximation of the Pareto frontier. We designed an algorithm based on the Nondominated Sorting Genetic Algorithm; an algorithm based on the Pareto Archive Evolution Strategy; and an algorithm based on mathematical programming. We developed a random problem generator for testing and comparison using as reference the Colombian coffee supply network with 29 depots and 47 purchasing centers. We compared the algorithms based on the quality of the approximation to the Pareto frontier using a nondominated space metric inspired on Zitzler and Thiele’s. We used the mathematical programming-based algorithm to identify unique tradeoff opportunities for the reconfiguration of the Colombian coffee supply network. Finally, we illustrate an extension of the mathematical programming-based algorithm to perform scenario analysis for a set of uncapacitated location problems found in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a bi-objective location routing problem by a NSGA-II combined with clustering approach: application in waste collection problem

It is observed that the separated design of location for depots and routing for servicing customers often reach a suboptimal solution. So, solving location and routing problem simultaneously could achieve better results. In this paper, waste collection problem is considered with regard to economic and societal objective functions. A non-dominated sorting genetic algorithm (NSGA-II) is used to l...

متن کامل

Heuristic Methods Based on MINLP Formulation for Reliable Capacitated Facility Location Problems

This paper addresses a reliable facility location problem with considering facility capacity constraints. In reliable facility location problem some facilities may become unavailable from time to time. If a facility fails, its clients should refer to other facilities by paying the cost of retransfer to these facilities. Hence, the fail of facilities leads to disruptions in facility location dec...

متن کامل

A modified NSGA-II solution for a new multi-objective hub maximal covering problem under uncertain shipments

Hubs are centers for collection, rearrangement, and redistribution of commodities in transportation networks. In this paper, non-linear multi-objective formulations for single and multiple allocation hub maximal covering problems as well as the linearized versions are proposed. The formulations substantially mitigate complexity of the existing models due to the fewer number of constraints and v...

متن کامل

Efficiency of a multi-objective imperialist competitive algorithm: A bi-objective location-routing-inventory problem with probabilistic routes

An integrated model considers all parameters and elements of different deficiencies in one problem. This paper presents a new integrated model of a supply chain that simultaneously considers facility location, vehicle routing and inventory control problems as well as their interactions in one problem, called location-routing-inventory (LRI) problem. This model also considers stochastic demands ...

متن کامل

TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming

The objective of this paper is to present a technique for order preference by similarity to ideal solution (TOPSIS) algorithm to linear fractional bi-level multi-objective decision-making problem. TOPSIS is used to yield most appropriate alternative from a finite set of alternatives based upon simultaneous shortest distance from positive ideal solution (PIS) and furthest distance from negative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals OR

دوره 147  شماره 

صفحات  -

تاریخ انتشار 2006